问题描述:
已知函数f(x)=sin(2x-| π |
| 4 |
A.
| π |
| 6 |
B.
| π |
| 3 |
C.
| π |
| 4 |
D.
| π |
| 2 |
最佳答案:
f(x+a)=sin(2x+2a-
| π |
| 4 |
f(x+3a)=sin(2x+6a-
| π |
| 4 |
因为f(x+a)=f(x+3a),且a∈(0,π)
所以2x+2a-
| π |
| 4 |
| π |
| 4 |
∴a=
| π |
| 2 |
即存在a=
| π |
| 2 |
故选D.
问题描述:
已知函数f(x)=sin(2x-| π |
| 4 |
| π |
| 6 |
| π |
| 3 |
| π |
| 4 |
| π |
| 2 |
f(x+a)=sin(2x+2a-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| π |
| 2 |
下一篇:探究凸透境成像规律