紫气C
返回首页 | 学习强国
关键字: | 时间:2025-11-06 02:41 | 人浏览

【答案】线面平行的性质定理

一条直线与一个平面无公共点(不相交),称为直线与平面平行。线面平行的性质定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。

线面平行的性质定理一

平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

已知:a‖b,a?α,b?α,求证:a‖α

反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α

∵a‖b,∴A不在b上

在α内过A作c‖b,则a∩c=A

又∵a‖b,b‖c,∴a‖c,与a∩c=A矛盾。

∴假设不成立,a‖α

线面平行的性质定理二

平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。

已知:a⊥b,b⊥α,且a不在α上。求证:a‖α

证明:设a与b的垂足为A,b与α的垂足为B。

假设a与α不平行,那么它们相交,设a∩α=C,连接BC由于不在直线上的三个点确定一个平面,因此ABC首尾相连得到△ABC

∵B∈α,C∈α,b⊥α

∴b⊥BC,即∠ABC=90°

∵a⊥b,即∠BAC=90°

∴在△ABC中,有两个内角为90°,这是不可能的事情。

∴假设不成立,a‖α。

答案有错

上一篇:余数三大定理

下一篇:高考数学应试技巧及答题策略

紫气C手机端XML联系我