已知曲线C的参数方程为(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C′.
(1)求曲线C′的普通方程;
(2)若点A在曲线C′上,点B(3,0),当点A在曲线C′上运动时,求AB中点P的轨迹方程.
【答案】解:(1)将代入,得C'的参数方程为
∴曲线C'的普通方程为x2+y2=1.
(2)设P(x,y),A(x0 , y0),又B(3,0),且AB中点为P
所以有:
又点A在曲线C'上,∴代入C'的普通方程得(2x﹣3)2+(2y)2=1
∴动点P的轨迹方程为.
【解析】(1)利用坐标转移,代入参数方程,消去参数即可求曲线C′的普通方程;
(2)设P(x,y),A(x0 , y0),点A在曲线C′上,点B(3,0),点A在曲线C′上,列出方程组,即可求AB中点P的轨迹方程.