四棱锥P-ABCD的底面ABCD是正方形,E,F分别为AC和PB上的点,它的直观图,正视图,侧视图如图所示.
(1)求EF与平面ABCD所成角的大小;
(2)求二面角B-PA-C的大小.
【答案】(1)45°;(2)45°
【解析】试题分析:(1)取AB中点G,连接FG,GE,则FG∥PA,GE∥BC,可得D,∠FEG为EF与平面ABCD所成的角,解三角形可求;(2)由PA⊥BA,PA⊥CA,知∠BAC为二面角B-PA-C的平面角,即可求解.
试题解析:
根据三视图可知:PA垂直于平面ABCD,点E,F分别为AC和PB的中点,ABCD是边长为4的正方形,且PA=4.
(1)如图,取AB中点G,连接FG,GE,则FG∥PA,GE∥BC,所以FG⊥平面ABCD,∠FEG为EF与平面ABCD所成的角,在Rt△FGE中,FG=2,GE=2,所以∠FEG=45°.
(2)因为PA⊥平面ABCD,所以PA⊥BA,PA⊥CA,
所以∠BAC为二面角B-PA-C的平面角.
又因为∠BAC=45°,
所以二面角B-AP-C的平面角的大小为45°.