在△ABC中, 高AD、BE所在直线交于H点, 若BH = AC, 则∠ABC的值为_________.
【答案】45°或135°
【解析】有2种情况,如图(1),(2),∵∠BHD=∠AHE,又∠AEH=∠ADC=90°,∴∠DAC+∠C=90°,∠HAE+∠AHE=90°,∴∠AHE=∠C,∴∠C=∠BHD,∵BH=AC,∠HBD=∠DAC,∠C=∠BHD, ∴△HBD≌△CAD,∴AD=BD.如图(1)时∠ABC=45°;如图(2)时∠ABC=135°.∵AD=BD,AD⊥BD,∴△ADB是等腰直角三角形,∴∠ABD=45°,∴∠ABC=180°-45°=135°,故答案为:45°或135°.