在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是______
【答案】 【解析】∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;
又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.
设圆心C(4,0)到直线y=kx﹣2的距离为d,
则d=≤2,即3k2﹣4k≤0,
∴0≤k≤ .
∴k的最大值是 .
所以答案是: .